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Introduction 

The most frequently reported causes of the occurrence 

and development of hypertension and atherosclerosis 

relates to the problems in renin–angiotensin system 

(RAS)1 and one of the main aspects of current strategies 

to reduce the risk of cardiovascular events is its 

pharmacological inhibition.1 

The  important role of the angiotensin converting 
enzyme (ACE) as a part of RAS in maintaining human 

blood dynamic balance was determined after the 

discovery of the production of  angiotensin II from the 

cleavage of angiotensin I by ACE in 1956.2 Its main 

activity is catalyzing the activation of Angiotensin I by 

converting it to the vasoconstrictive octapeptide 

(Angiotensin II).3 The cloning of ACE revealed that 

this enzyme consists of two independent catalytic 

domains (i.e. N and C domains, figure 1).4 Excessive 

activity of ACE leads to an increased rate of 

vasoconstriction and development of high blood 
pressure. The inhibition of ACE would lead to the 

reduction of angiotensin II production and consequent 

decrease of the blood pressure.  

 

Figure 1. Crystal structure of ACE illustrated by autodock 4.2 (pdb code: 1O86). 

Background: Inhibition of angiotensin converting enzyme (i.e inhibition of cleaving 

angiotensin I to the potent vasoconstrictor angiotensin II) leads to the treatment and 
reduce the risk of cardiovascular diseases. Peptides (synthetic - natural) with ACE 

inhibitory activity were studied continuously during the last decades and resulting data 

were applied by medicinal chemists to design and develop new drugs. Their structure 

and activity/property relationships were studied during these years and different 

QSAR models were developed which assisted researchers and manufactures to reduce 

the cost of experiments. Developed models were reviewed in the present paper 

according to the applied dataset, descriptors, feature selection methods, model 

development and validation methods. The selected descriptors for different datasets 

and models were compared and discussed according to the experimental findings. 
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 The discovery of captopril 5,6 based on a product from 

snake venom in 1975, represented a major 

breakthrough in the treatment of cardio-vascular 

diseases as the prototype of orally active angiotensin-

converting enzyme inhibitors (ACEIs). Synthetic ACE 

inhibitors such as captopril, enalapril, lisinopril, and  

ramipril are currently used in the treatment of 

hypertension in human7 (Table 1) and their structure–

activity relationship are studied to clarify their mode of 

action: i.e. as competitive, noncompetitive, or 

uncompetitive inhibitors.7  

Table 1.  Examples of synthetic peptide antihypertensive drug
8
. 

 

Drug Name Molecular structure IC50 Tissue 
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Development of selective ACE inhibitor peptides 8 with 

lower side effects (cough and angioedema due to 

interaction with the carboxypeptidase A) and higher 

potency necessitate the study of the natural 9and 

synthetic peptides. Researchers tried to isolate ACE 

inhibitor peptides from natural sources (e.g. marine 9,10, 

plant11,12 animal,13,14 and food)15  and study their 

physicochemical and pharmacological properties. 

Following the development and extraction of a vast 
number of peptides, prediction of their applicability for 

different therapeutic aims (e.g. ACE inhibitory activity 

itself or as an indicator for bioactivity) leads to the 

development of different quantitative structure activity 

relationship (QSAR) models. By the increasing of 

different modeling methods (by the application of 

various descriptors and modelling methods), selection 

of the appropriate method will be crucial for save the 

time and resources. This review will summarize the 

developed models according to the applied descriptor 

type, descriptor selection method, modeling method 

and validity of the developed models. In addition the 
models will compare according to their prediction 

capability.  

 

Figure 2. Common Workflow for a QSAR method development. 

Overview of QSAR studies of the peptide ACE 

inhibitors 

According to our bibliography (Scopus from 2000-
2014 (April first week)) using different keywords,  a 

number of studies have been published in which the 

non-English papers were not considered. The review 

was constructed on the bases of a routine QSAR 

workflow (Figure 2).16,17 The applied databases, 

molecular descriptors, feature selection methods, 

developed models, validation parameters, prediction 

capability and selected descriptors are reviewed and 

presented via tables, graphs and figures.  

 

Databases 
Applied data for construction a QSAR method have 

crucial rule in the validity of the developed model. The 

dataset suitable size (higher statistical validity) and 

quality (wider applicability domain and lesser gaps) 

will provide more information about the studied 
activity and development of more predictive models 

will be possible. Reviewing of the published studies 

showed that most of them obtained the needed data 

from literature or databases. Some databases which 

have been used frequently for QSAR model 

construction for peptides are summarized in Table 2. 

These databases include amino acids along with 2-14 

or higher peptides. Di and tri-peptides are studied more 

frequently than oligopeptides. The origin of these 

peptides varying from synthetic sources to planet, 

microorganisms, marines, milk, egg, etc. 

 

Table 2. Available online databases for peptide ACE inhibitors. 

Database/Dataset 

Name 
Web address Available Peptide 

ACEpepDB http://www.cftri.com/pepdb/index.php 865 

BIOPEP http://www.uwm.edu.pl/biochemia/index.php/en/biopep 556 

EROPMoscow http://erop.inbi.ras.ru 313 

PepBank http://pepbank.mgh.harvard.edu 19,792 

PeptideDB http://www.peptides.be/ 20,027 

http://pepbank.mgh.harvard.edu/
http://www.peptides.be/
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 Developed QSAR models 

Applied linear and nonlinear models 

The linear regression models (i.e. multiple linear regression (MLR), ordinary 

least squares (OLS), principal component regression (PCR), partial least squares 

(PLS)) and nonlinear models (e.g. artificial neural networks (ANNs)) are among 

the most frequently applied modeling methods. While methods such as support 

vector machines (SVM) have been used recently (Table 3).18-36 

. 
Table 3. Developed QSAR models along with the validated parameters. 

Modeling method Model code Data points Descriptors Test dataset 

Descriptor 

(number) 

 

Q
2

(CV) Descriptor inter correlation Chance correlation RMSE R
2 

Ref 

PLS 

1 
168di,140 

Tripeptide 
Z-score No 3 0.426 YES NO 0.404 0.500 18 

2 58dipeptide VHSE No 8 0.770 YES NO 0.48 0.770 19 

3 58dipeptide SVWG  4 0.830   0.340 0.893 20 

4 58dipeptide VSW YES 9 0.835 YES NO 0.38 0.861 21 

5 58dipeptide V-scales YES 3 0.783 YES YES 0.400 0.849 22 

6 58dipeptide SVMW YES 11 0.885 YES NO 0.432 0.906 23 

7 55tripeptide SVMW YES 11 0.931 YES NO 0.077 0.998 23 

8 27tripeptide Z-score NO 3 0.649 YES NO  0.843 24 

9 58dipeptide SVWGM YES 18 0.779 YES NO 0.386 0.865 25 

10 58dipeptide FASGAI NO - 0.775 YES NO 0.456 0.796 26 

11 58dipeptide HESH NO 12 0.838 YES NO 0.361 0.877 27 

12 58dipeptide T-scales NO 4 0.786 YES NO 0.39 0.845 28 

13 58di dipeptide G-scales NO 8 0.831 YES NO 0.37 0.870 29 

14 55 tripeptide G-scales NO 8 0.915 YES NO 0.096 0.983 29 

GA-PLS 

15 58 dipeptide FASGAI NO - 0.728 YES NO 0.495 0.760 26 

16 58dipeptide QTMS YES - 0.803 YES NO 0.381 0.855 30 

17 55tipeptide VTSA NO 5 0.778 YES NO 0.431 0.820 31 

MLR 

18 58dipeptide METDV NO - 0.677 YES NO 0.452 0.793 32 

19 58tripeptide E NO 5 0.980 YES NO 0.062 0.991 33 

20 55tripeptide V-scales YES 3 0.943 YES YES 0.130 0.967 35 

OCSPLS  21 58dipeptide V-scales YES 3 0.817 YES YES 0.410 0.838 22 

ANN  22 58dipeptide Z-scales YES 3 - YES NO - 0.928 35 

SVM  23 58dipeptide VTSA NO 3 0.802 YES NO 0.378 0.851 31 

SVR  24 55tripeptide E NO 3 0.886 YES NO 0.348 0.937 36 

 



 

[126] 

 

Linear models have been the basis of QSAR analysis since its beginning. They 

predict the activity as a linear function of molecular descriptors. In general, linear 

models are easily interpretable and sufficiently accurate for small datasets of 

similar compounds, especially when the descriptors are carefully selected for a 

given activity. Among the developed linear models, PLS model number 7 

possessed the highest R2 0.998 for tri-peptides, while model PLS number 6  could 
predict dipeptide ACEI activity more accurate than others with R2 value of 0.906 . 

Model number 1 was the only general linear model which was developed using a 

data set of 168 di and 140 tri peptides and could predict the activity with R2 value 

of 0.5.  

Non-linear models extend the structure-activity relationships to non-linear 

functions of input descriptors. Such models may become more accurate, 

especially for large and diverse datasets. However, usually, they are harder to 

interpret. Among the developed models there are some ANN and SVM models 

which are developed for di or tri-peptides which were able to predict the activity 

more accurately than the similar linear models (Table 3. compare model number 
22 and 23). Other nonlinear models were not more accurate than some of the 

existing linear models.  

Table 4. Details of applied descriptors. 

Descriptor 

category 
Definition 

Z-score 
Interpreted as related to hydrophobicity (z1-score), side-chain bulk (z2-score) and electronic properties (z3- score) of amino acids  calculated by principal 

component analysis (PCA) from a matrix consisting of 29 physicochemical variables 

VHSH Principal components score Vectors of Hydrophobic, Steric, and Electronic properties 

VSW 
Vector of principal component scores (VSW) for weighted holistic invariant molecular index, was derived from the principal component analysis of a 

matrix of 99 weighted holistic invariant molecular indices of amino acids 

V-scales 
Derived from a matrix of three structural variables of the natural amino acid, including van der Waal’s volume, net charge index and hydrophobic 

parameter of side residues 

HESH A new set of descriptors, Hydrophobic, Electronic, Steric, and Hydrogen 

T-scales 
A new topological descriptor T-scale is derived from principal component analysis (PCA) on the collected 67 kinds of structural and topological variables 

of 135 amino acids. 

G-scales 
Eight kinds of parameters were derived from 457 kinds of physicochemical properties of the amino acid index database, which was classified into three 

sorts of parameters including hydrophobic, steric and electric properties. 

FASGAI Factor analysis scales of generalized amino acid information 

QTMS A new source of amino acid (AA) indices based on quantum topological molecular similarity (QTMS) descriptors 

VTSA Vector of topological and structural information for coded and non-coded amino acids 

METDV Molecular electronegativity topological distance vector 

E Quantitative multidimensional amino acids descriptors E (E1–E5) 

 

Applied descriptors(features) 

Applied descriptors could be classifies in 3 main categories: structural descriptors 

calculated by common software, sequence based descriptors and experimentally 

derived physicochemical properties. In addition 3D descriptors which are 

calculated using grid based methods or molecular dockings are used recently. The 

details of the applied descriptors are shown in Table 4. 

Feature selection methods 

Feature selection dimension reduction is one of the most important part of a 

QSAR method development procedure. Appropriate set of features or feature 

combination will prevent over fitting. Application of suitable feature 

selection/dimension reduction method will lead to the development of an 

applicable model. 
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 Table 3 shows the applied feature selection/dimension 

reduction methods in the reviewed studies. According 

to the table most of the studies applied PLS as a 

dimension reduction method, while some of them are 

used GA-PLS method. 

 

Validation of the developed methods 

Validation of QSAR models is one the most important 

part of the model development. Our review showed that 
most of the studies validated the developed methods 

according to the test set prediction capability and leave 

one out cross validation results. Y-randomization, leave 

many out, applicability domain were not studied for 

most of the models. It seems that the future models 

would need to be validated according to the guidelines 

in order to be applicable for drug discovery studies.  

 

Selected descriptors 

Regulska et. al. 37 reviewed the structure activity 

relationship of ACEIs and concluded the minimal 

obligatory requirements which is needed for the 

inhibitor to interact with the active site of ACE as:  

- The terminal carboxyl to facilitate the ionic 
interactions with the cationic site  

- A hydrogen bond acceptor (e.g. carbonyl of 

amidic nature) 

- The ionisable functional group to coordinate 

with the Zn2+ ion 

 

-  

 
Figure 3. Scheme of ACE active site, interacted with angiotensin (I). 

They also listed a number of auxiliary features which are 

responsible for potency enhancement of available ACEIs 

that could be summarized as additional ionisable groups 

or hydrophobic moieties for further interaction. Figure 3 

shows a schematic SAR of ACEIs.  

According to Table 4, the applied descriptors are 
including hydrophobic, topologic and electronic 

variables or a combination of different descriptors, and a 

correlation was found between ACE inhibition and 

structural properties related to hydrophobicity, positive 

charge and molecular volume of the amino acids at the 

C-terminal region covering the two last amino acids for 

peptides containing up to six amino acid residues.38  

 

Conclusion  

Prediction of peptides bioactivity can help to identify 

natural proteins containing encrypted peptides of 
potential biological effect. Developing of reliable QSAR 

models would help the researchers to predict the 

available peptides activity and to predict the possible 

modifications which will improve the activity of 

peptides. These models could be used in high-throughput 

screening studies if they are developed based on a 

reliable database. This review indicates that most of the 

available models are developed based on a small dataset 

and most of them are not validated. The availability of 

online datasets would help the researchers to use more 

diver’s datasets and develop more reliable methods.  
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