Idiopathic Gingival Enlargement and its Management: A Case Report

Mohammad Taghi Chitsazi1 • Adileh Shirmohammadi2* • Abouzar Moradi3 • Zahra goharfar4

1Associate Professor, Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
2Professors, Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
3Assistant Professor, Department of Periodontics, Faculty of Dentistry, Alborz University of Medical Sciences, Iran
4Assistant Professor, Department of Periodontics, Faculty of Dentistry, Urmia University of Medical Sciences, Iran

*Corresponding Author; E-mail: shirmohamadia@yahoo.com

Received: 10 September 2014; Accepted: 7 July 2015

This article is available from: http://dentistry.tbzmed.ac.ir/jpid

© 2015 The Authors; Tabriz University of Medical Sciences

Abstract

Idiopathic or hereditary gingival fibromatosis (HGF) is a relatively rare disease characterized by the enlargement of the gingiva, resulting in functional, esthetic and psychological disturbances. The degree of gingival overgrowth can be defined as: grade 0: no sign of gingival enlargement; grade I: enlargement confined to interdental papilla; grade II: enlargement involves papilla and marginal gingiva; and grade III: enlargement covers three quarters or more of the crown. This case report describes the case of a 16-year-old girl suffering from HGF with chief complaint of gingival swelling. Intraoral examination exhibited diffuse and grade III gingival enlargement in both jaws and also in both surfaces of buccal and lingual/palatal. Treatment included surgery (internal and external gingivectomy) in six sessions, and prescription of antibiotics and 0.2% chlorhexidine mouthwash. Moreover, gingivoplasty was performed in the esthetic zone of maxilla after performing all the surgeries in the mouth. The patient was under regular follow-up visits. The treatment outcomes after six months were satisfactory and no symptoms of recurrence were observed.

Key words: Gingival fibromatosis, gingival enlargement, gingivectomy.

Introduction

Hereditary gingival fibromatosis (HGF) is the most common syndromic gingival enlargement.2 Its clinical appearance is usually detected by pink, diffuse, firm and leathery, non-hemorrhagic and asymptomatic gingival enlargement.3,4 Its prevalence is 1/175000, with equal predilection for men and women.5,6 The disease often starts at the commencement of permanent dentition, although it may occur during primary dentition period or at birth time.7,8 From the localization aspect, it is heterogeneous in a way that it could be localized or generalized, and involves buccal or lingual (palatal) surfaces, and the maxilla or mandible.9,10 Its growth usually happens simultaneously with tooth eruption; increases during teenage period, decreases in adults and it may disappear with tooth extraction.4,11,12

The most prevalent effects of this disease on dentition are diastema, prolonged retention of primary
teeth, delayed eruption and malpositioning of permanent teeth, malocclusion and prominent lips.4,10,13,14 It would also cause bone loss indirectly by accumulation and deficiency in plaque control. HGF etiology is unknown; however, its origin is hereditary (autosomal dominant or autosomal recessive). The probability of its penetration in the people from the same race is varied and could be complete or incomplete.15-17

HGF can occur isolated or accompanied by syndromes. In the syndromic one (Table 1),18 the most popular signs with gingival enlargement is hypertrichosis.12,19 Several mechanisms can have a part in the pathogenesis of this condition:2,20-26 1) increased collagen synthesis due to TGF-\(\beta_1\) and prolyl 4-hydroxylases (P4Hs) expression; 2) reduction in collagen destruction as a result of an increase in the expression of tissue inhibitor matrix metalloproteinases (TIMP), a decrease in matrix metalloproteinases (MMPs) and creation of cross-linked in collagen fibers; 3) an increase in fibroblast proliferation because of an increase in TGF-\(\beta_1\) expression; 4) boosted keratinocytes and their stimulatory effects on fibroblasts as an effect of interactions between keratinocytes-fibroblasts. Hereditary gingival fibromatosis should be differentiated from a number of diseases (Table 2)27 by clinical, laboratory and histological examinations.

Table 1. Syndromes associated with HGF

<table>
<thead>
<tr>
<th>Associated Syndromes</th>
<th>Main Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gingival fibromatosis with hypertrichosis</td>
<td>Gingival fibromatosis, hypertrichosis, mental retardation, muscular hypotonia</td>
</tr>
<tr>
<td>Zimmer-man Laband</td>
<td>Gingival fibromatosis, abnormal fingers, fingernails, nose, and ears, hepatosplenomegaly, hyperextensible metacarpophalangeal joints</td>
</tr>
<tr>
<td>Rutherford (Oculo-dental)</td>
<td>Gingival fibromatosis, corneal dystrophy/opacities, aggressive behavior, mental retardation</td>
</tr>
<tr>
<td>Cross</td>
<td>Gingival fibromatosis, microphthalmia, mental retardation, hypopigmentation</td>
</tr>
<tr>
<td>Murray-Puretic Drescher’s (Juvenile hyaline fibromatosis)</td>
<td>Gingival fibromatosis, involvement of bones, joints, cartilage, skin, Muscles, infection</td>
</tr>
<tr>
<td>Ramon</td>
<td>Gingival fibromatosis, seizures, stunted growth, juvenile rheumatoid arthritis, cherubism, hypertrichosis, mental retardation</td>
</tr>
<tr>
<td>Prune-belly</td>
<td>Gingival fibromatosis, Absence of abdominal muscles, facial dimorphism, abnormality of urinary tract</td>
</tr>
<tr>
<td>Jones</td>
<td>Gingival fibromatosis, progressive deafness, maxillary odontogenic cysts and undescended testis</td>
</tr>
</tbody>
</table>

Table 2. Generalized gingival enlargements that might mimic HGF

<table>
<thead>
<tr>
<th>Generalized symmetric enlargements</th>
<th>Generalized nodular enlargements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyloidosis</td>
<td>Neurofibromatosis (type 1 and 2)</td>
</tr>
<tr>
<td>Sturge Weber syndrome</td>
<td>Gardner’s syndrome</td>
</tr>
<tr>
<td>Wegener’s granulomatosis</td>
<td>Cowden’s syndrome</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>Tuberous sclerosis</td>
</tr>
<tr>
<td>Oro-facial granulomatosis</td>
<td></td>
</tr>
<tr>
<td>Leukemia (Acute myeloid leukemia)</td>
<td></td>
</tr>
<tr>
<td>Drugs induced gingival enlargement (phenytoin, cyclosporine, and calcium channel blockers)</td>
<td></td>
</tr>
<tr>
<td>Plaque induced gingival hyperplasia</td>
<td></td>
</tr>
<tr>
<td>Plasma cell gingivitis</td>
<td></td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td></td>
</tr>
</tbody>
</table>
Idiopathic Gingival Enlargement and its Management

Figure 1. Frontal view of the patient: a) Preoperative facial asymmetry and hypertrichosis; b) 6 months postoperatively, showing good esthetic results.

Figure 2. Intraoral views of the patient: A) frontal views; B) lateral view (right side); C) lateral view (left side); D) upper occlusal view; E) lower occlusal view.

Figure 3. Panoramic radiograph of the patient showing generalized bone loss that was severe in the left first molars.

vere than on the right side. In the radiographic view generalized bone loss was observed that was severe in the left first molars that indicated the probability of aggressive periodontitis along with gingival enlargement. In addition, the left second molars were unerupted (Figure 3). Hematologic evaluation of the patient was normal. In histological evaluation of lesions, an increase in connective tissue with condensed collagen fibers along with light infiltration with persistent inflamed cells was seen. Based on clinical and histological findings, and medical and family history of the patient, HGF was diagnosed. Treatment included surgery (internal and external gingivectomy) in six sessions, with prescription of antibiotic and 0.2% chlorhexidine mouthwash. Moreover, gingivoplasty was performed in the esthetic zone of maxilla after performing all the surgeries in the mouth. The patient was under regular follow-up visits. The treatment outcomes after six months were satisfactory and no symptoms of recurrence were observed (Figures 1 to 4).
Discus

HGF is heterogeneous from clinical and genetic aspects as well as pathogenesis. It usually starts simultaneously with tooth eruption and disappears by their extraction. This shows that the tooth or its adjacent plaque can play an important role in the onset of this condition. HGF could be isolated or accompanied by syndromes. The reported case was in the syndromic group (HGF-hypertrichosis syndrome). There is controversy over the HGF treatment initiation in children. Some researchers believe that it is desirable to wait until adolescence; as a matter of fact there is probability of recurrence in this period. Of course the delay in initiating treatment leads to prolonged retention of primary teeth, delayed eruption and malposition in permanent teeth, disturbances in function and esthetic and psychological complications.4,12,16,28-30 Accordingly, it is preferable to start the treatment at the time of diagnosis with the patient complaint and disturbances in normal function. HGF treatment includes scaling and root planing (SRP), oral hygiene instruction (OHI) or surgery depending on its severity.3,31,32

The incidence of disease recurrence could not be anticipated; however, its probability in teenagers is more than adults and is faster in regions with plaque.4,5,33 In conclusion, proper plaque control along with accurate and short-term follow-up visits could be effective in reducing the recurrence risk of this condition.

References

