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Introduction 

Hematopoiesis is regulated by a number of cytokines 

that promote the survival, proliferation, and 

differentiation of hematopoietic stem cells and 

progenitor cells.
1
 Stem Cell Factor (SCF) plays an 

important role in hematopoiesis, spermatogenesis, and 

melanogenesis. Biological effects of SCF; as a 

hematopoietic cytokine; is triggered by binding to its 

ligand c-kit.
1
 SCF is encoded by the Sl locus on 

mouse chromosome and has been mapped to human 

chromosome 12q22-12q24. The soluble and 

transmembrane types of SCF are produced by 

alternative splicing that includes or excludes a 

proteolytic cleavage site in exon 6. Both the soluble 

and the transmembrane type of SCF are biologically 

active.
2-8

 Translation of mRNA including exon 6 

encodes a proteolytic cleavage site, resulting in the 

production of soluble SCF (SCF248). In soluble form, 

the cleavage arises after Ala165. In contrast, the lack 

of exon 6 in human SCF220 results in production of 

the transmembrane form of human SCF. In SCF220, 

amino acids 149-177 are substituted by a Gly residue. 

The soluble form of SCF circulates as a noncovalently 

bonded dimer, is glycosylated, and has substantial 

secondary structure, containing regions of α helices 

and β sheets. The molecular weight of the soluble type 

of SCF considered from its amino acid sequence is 

about 18.5 KD. Expression of SCF in Chinese 

hamster ovary (CHO) cells produce proteins of 28 to 

40 KD, reflecting the presence of extensive and 

heterogeneous glycosylation.
9
 Even though an active 

dimeric form of SCF with 4 intermolecular disulfide 

bonds has been recognized during oxidation and 

refolding of recombinant SCF expressed in 

Escherichia coli, neither Chinese hamster ovary-

expressed SCF nor native SCF dimers have been 

stated to contain intermolecular disulfide bonds, so it 

seems unlikely that this form of SCF plays a major 

role in vivo.
10-11 

Recombinant human SCF has major clinical potential 

through its synergy with other factors, to enhance 

hematopoietic stem cell mobilization.
12,14

 SCF is also 

useful in gene therapy as hematopoietic cells exposed 

to SCF either in vivo or in vitro are more efficiently 

transduced by retroviral vectors.
2
 Ex vivo expansion 

of hematopoietic stem cells and progenitor cells is 

another potential application for SCF.
15-18

 Considering 

the various applications of SCF and its high cost, 

production of human SCF as a recombinant protein is 

a necessity in our country. In the present work, we 

describe the construction of the soluble rhSCF 

expression vector in pET-26b(+) under the control of 

T7 promotor in bacterial host. This vector carries 

PelB signal sequence for potential periplasmic 

localization. In most cases, targeting protein 
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production to the periplasmic space facilitates 

downstream processing, folding, and in vivo stability, 

enabling production of soluble and biologically active 

proteins at a reduced process cost. 

 

Materials and Methods 

Strains, plasmids and culture media 

DH5-α and BL21 (DE3) Ecoli strains were used as the 

hosts for recombinant plasmid. BL21 (DE3) Ecoli is 

an E. coli B strain with DE3, a λ prophage carrying 

the T7 RNA polymerase gene. pET-26b(+) Vector 

(Novagen, USA) was used as the expression vector in 

experiments. pET-26b(+) (Cat. No. 69862-3) is a 

bacterial expression vector with the size of 5.5 kb 

containing PelB sequence for periplasmic localization. 

LB agar and Broth were used for culturing the strains. 

cDNA of soluble human SCF was provided from 

genecopea company. 

 

Amplification of ORF SCF gene with PCR 

ORF of human SCF gene was amplified by PCR using 

the following primers: SCF-E-Fwd 

5΄CATCCATGGAAGGGATCTGCAGGAATCGT3΄ 

and SCF-E-Rev 

5΄TATCTCGAGGGCTGCAACAGGGGG 

TAACAT3΄. The underlined bases designate NcoI and 

XhoI restriction sites. The PCR mixture consisted of 5 

μL of 10 × PCR buffer, 3 mM MgCl2, 0.2 mM for 

each dNTP, 250 nM for each primer, 1 μL of template 

DNA, and 5 units of Pfu DNA polymerase 

(fermentas) in the final volume of 50 μL. The 

amplification consisted of 35 cycles on a 

thermocycler (Eppendorf) as follows: preliminary 

denaturation for 5 min at 95 °C followed by 10 cycles 

including denaturation for 30sec at 95 °C, annealing 

for 30 sec at 58 °C and extention for 30 sec at 72 °C, 

subsequently 25 cycle including denaturation for 

30sec at 95 °C, annealing for 30 sec at 63˚C and 

extention for 30sec at 72 °C and final extention for 

5min at 72 °C. PCR product fragment was 

electrophoresed on the 1% agarose gel and stained 

with ethidium bromide. After the PCR process, the 

amplified DNA fragments are size-separated by 

agarose gel electrophoresis and purified using the 

QIAquick Gel Extraction kit (QIAGEN). 

 

Construction of the expression vector pET-26b(+)-

hSCF 

The PCR product and the pET-26b(+) vector were 

double-digested with the NcoI and the Xho1 

restriction endonucleases for 12h at 37 °C. Then 

digested fragments were electrophoresed on the 0.8% 

agarose gel stained with ethidium bromide. 

Subsequently, fragments were purified using 

QIAquick Gel Extraction kit (QIAGEN) following 

manufacturer's instructions. Ligation was performed 

using T4 DNA ligase enzyme (Frementas) according 

to the manufacturer’s instructions. Briefly 100 ng of 

purified double-digested pET-26b(+) and 3 - 5 fold 

molar excess of insert were incubated with T4 DNA 

ligase enzyme and 10X T4 DNA ligase buffer at 22 

°C for at least 6 hr. The recombinant vector were 

transformed into the competent DH5α by standard 

calcium chloride method. Transformants were 

selected on LB medium containing kanamycin (50 g 

/mL). A single colony of E. coli cells carrying the 

ligated plasmid was grown in 3 ml LB medium 

containing kanamycin. Plasmid extraction was 

performed using the GeneJETTM Plasmid Miniprep 

kit (Fermentas). Subsequently clones containing 

ligated plasmid were screened by PCR and 

sequencing methods using the mentioned primers. 

Then the construct was transformed into BL21 (DE3) 

Ecoli strains and were selected on LB containing 

kanamaycin (50 g /mL). 

 

Results  

Amplification of ORF SCF gene with PCR 

ORF SCF gene without stop codon was amplified by 

SCF-E-Fwd and SCF-E-Rev primers which contains 

restriction sites. NcoI and XhoI restriction sites were 

introduced at the 5´ and 3´ of the ORF SCF gene 

respectively, therefore the coding sequence was 

preceded by a pelB signal sequence at the 5׳ region 

and a 6 His-tag at the 3׳ of the gene. Successful 

amplification of 495 bp of SCF ORF was visualized 

on 1% Agarose by UV transilluminator (Figure 1).  

 

Figure 1. Agarose gel electrophoresis of amplified hSCF ORF. 

Lane M, 50bp DNA Ladder (Frementas); Lane 1-3, amplified 

ORF of hSCF gene 

 

Construction of the expression vector pET-26b(+)-

hSCF 

Subsequent to digestion of PCR product and pET-

26b(+) vector, in order to purify DNA fragments 

from gel, digested fragments were resolved onto 
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ethidium-bromide stained 0.8% agarose gel and 

visualized by UV transilluminator (Figure 2). In 

electrophoresis of intact vector, two different bonds 

can be detected. The upper band belongs to coiled 

vector and lower belongs to supercoiled vector. 

Digested vector (Lane 2) is placed between these 

two bands. Following ligation, the construct was 

transformed into DH5-α E.coli cells and were 

selected on LB containing kanamaycin (50 g /mL). 

Transformants were characterized by colony PCR 

screening using the mentioned primers and a single 

band of the expected size (495 bp) corresponding to 

human SCF ORF was detected by agarose gel 

electrophoresis (Figure 3). The recombinant 

pET26b-hSCF plasmid was extracted and sequence 

analysis of recombinant pET-26b(+)-hSCF plasmid 

with the mentioned primers confirmed that there are 

no amplification errors and experiment of cloning 

was accurate (Figure 4, 5). Then the construct was 

transformed into BL21 (DE3) Ecoli strains and were 

selected on LB containing kanamaycin (50 g /mL). 

This approach allowed heterologous gene insertion 

between the T7 promoter sequence and the 

transcription termination sequence. 

 

 
Figure 2. Agarose gel electrophoresis of digested pET-26b(+) 
and PCR product with Xho1 and Nco1 restriction enzymes. 
Lane M shows 1kbp DNA Ladder (Frementas); Lane 1 
corresponds to digested pET-26b(+) vector; Lanes 2 and 3 
correspond to undigested the pET-26b(+); Lane 4 illustrates 
digested PCR product. 

 

 
Figure 3. Colony PCR screening of cloned rhSCF. The clones 
on kanamycin plates were picked and screened by PCR. Lane 
M corresponds to 100bp ladder (Fermentas). Lane 1-5 
represent bacterial clone containing amplified ORF of rhSCF. 

 

 
Figure 4. Sequencing analysis of recombinant pET-26b(+)-hSCF plasmid with SCF-E-Fwd primer. The box 1 shows restriction site of 
enzyme XhoI which located after ORF of SCF gene, the box 2 shows His- Tag that located after ORF of SCF gene and restriction site of 
enzyme XhoI. 
 
 

 

Figure 5. Sequencing analysis of recombinant pET-26b(+)-hSCF with SCF-E-Rev primer. The box 1 shows restriction site of NcoI before 
ORF of SCF gene, the Box 2 shows initiation codon of SCF gene that located before PelB signal peptide(underlined).  
 

Discussion 

A number of elements are essential in the design of 

recombinant expression systems. The genetic 

elements of the expression plasmid include origin of 

replication (ori), transcriptional promoters, an 

antibiotic resistance marker, translation initiation 

regions (TIRs) as well as transcriptional and 

translational terminators.
19,20

 There are many 

promoters accessible for gene expression in E.coli, 

including those derived from gram positive bacteria 

and bacteriophages. An ideal promoter presents 

several preferable features: it is strong, it has a low 

basal expression level, it is easily transportable to 

other E. coli strains to simplify testing of an immense 

number of strains for protein products, and its 

induction is uncomplicated and cost-effective. Unlike 

systems based on E. coli promoters (e.g., lac, tac, pL), 

the pET System uses the bacteriophage T7 promoter 

to manage the expression of target genes. Since E.coli 

RNA polymerase does not distinguish the T7 
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promoter, there is actually no transcription of the 

target gene in the absence of a source of T7 RNA 

polymerase and the cloning step is thus effectively 

separated from the expression step. Many genes that 

have been hard to make in E. coli promoter-based 

systems have been stably cloned and expressed in the 

pET System.
21-25

 

The periplasm presents some advantages for protein 

targeting. The target protein is thus drastic 

concentrated, and its purification is extremely less 

onerous. The oxidizing milieu of the periplasm 

promotes the correct folding of proteins, and the 

cleaving in vivo of the signal peptide during 

translocation to the periplasm is more probable to 

yield the genuine N terminus of the target protein. 

Protein degradation in the periplasm is also less 

extensive. The transport of a protein through the inner 

membrane to the periplasm generally requires a signal 

sequence.
26-41

 A wide diversity of signal peptides has 

been used successfully in E.coli for protein 

translocation to the periplasm. The pET-26b(+) vector 

produces recombinant protein with signal peptide 

pelB at the N-terminal for periplasmic secretion and a 

His-tag at the C-terminal for detection and 

purification.  

In this study SCF gene was cloned correctly and 

colony PCR and sequence analysis of the recombinant 

pET-26b(+)-hSCF confirmed that there are no 

amplification errors and that cloning was accurate. 

 

Conclusion 

The SCF ORF was successfully cloned in pET-26b(+) 

expression vector and is ready for future production of 

SCF protein. The production of recombinant hSCF in 

Iran will facilitate clinical treatment of anemia (as it 

mobilizes hematopoietic stem cell) and gene therapy. In 

addition smooth the progress of ex vivo expansion of 

hematopoietic stem cells and progenitor cells.  
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