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Introduction 
Drug-induced liver injury is a major complication for 
pharmaceutical industry and drug development.1-3 
Thiozolidinediones (TZDs) are the most widely used 
antidiabetic agents. A wide range of other 
pharmacological effects of TZDs are also reported.4-6 
However, some serious adverse events including 
hepatic injury is associated with TZDs 
administration.7,8 Troglitazone was introduced as a 
promising antidiabetic drug but had to be withdrawn 
from market within a few years because of serious liver 
injury accompanied with its administration.9 It appears 
that its sulfate conjugate inhibits bile salt transport 
from hepatocytes, leading to severe idiosyncratic 
hepatotoxicity.10 The other TZD drug, rosiglitazone, 
was withdrawn from the market due to cardiotoxicity.11 
Development of darglitazone and ciglitazone was 
discontinued, because of cataractogenic potential in 
rats.12 Hence, finding the mechanisms of drug-induce 
cellular injury will help to develop safer TZDs. 
Several cases of pioglitazone-induced liver injury have 
been reported.13,14 In clinical trials high serum levels of 
alanine aminotransferase (ALT) was seen after 
pioglitazone and rosiglitazone administration.15 
Although the precise mechanism of liver injury induced 

by TZDs is not recognized yet, but reactive metabolite 
formation16,17, oxidative stress induction,16 and 
intracellular organelles dysfunction18 are proposed to 
be involved in TZDs-induced liver injury. 
It has been shown that troglitazone is cytotoxic to 
HepG2 cells and hepatocytes.19 Pioglitazone has a 
reactive ring-opened product which is trapped by 
glutathione and has been identified by high 
performance liquid chromatography. These metabolites 
were identified in rat and human liver microsomes and 
in suspensions of freshly isolated rat hepatocytes, but 
not in human cells.20  
Mitochondrial impairment is involved in the etiology of 
hepatotoxicity, myopathy, cardiopathy, rhabdomyolysis 
and other serious side effects of many drugs.21-23 
Mitochondrial dysfunction caused by some of the 
TZDs, fibrates, statins and many other drugs have been 
previously reported based on studies of membrane 
potential, mitochondrial swelling and assays of the 
respiratory chain in isolated mitochondria.24-27 It has 
been shown that troglitazone caused a drop in 
membrane potential in HepG2 cells and also a decrease 
in ATP levels.28  
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The purpose of this study was to investigate the 
mechanisms involving in pioglitazone toxicity and its 
possible effect on cell mitochondria in an in vitro 
model of cultured HepG2 cells. Furthermore, the 
protective effects of some ATP suppliers such as 
glyceraldehyde and dihydroxyacetone were evaluated. 
 
Materials and methods 
Chemicals 
Pioglitazone hydrochloride, 5-diphenyltetrazolium 
bromide (MTT), glyceraldehyde, and dihydroxyacetone 
were purchased from Acros (New Jersey, USA). 
Fructose, glucose, α-ketoglutarate, 5,5'-dithiobis-(2-
nitrobenzoic acid (DTNB), Trichloroacetic acid (TCA), 
Ethyleneglycol-bis (2-aminoethylether)-N, N, N′, 
N′-tetra acetic acid (EGTA), and dimethyl sulfoxide 
(DMSO) were purchased from Merck (Darmstadt, 
Germany). Thiobarbituric acid (TBA) was obtained 
from SERVA (Heidenberg, New York). Fetal bovine 
serum (FBS) was from GibCo (Gibco, Germany). All 
salts used for preparing buffer solutions were of 
analytical grade and obtained from Merck (Darmstadt, 
Germany). 

Cell line and culture 
HepG2 is a perpetual cell line widely used as an in 
vitro system to investigate the effect of xenobiotics on 
liver.  HepG2 cells were obtained from the Department 
of Immunology, Shiraz University of Medical 
Sciences, Shiraz, Iran.  The cells were grown in an 
atmosphere with 5% CO2 at 37 o C in RPMI 1640 
medium® supplemented with 10% fetal bovine serum 
(FBS), penicillin (50 U/ml), streptomycin (50 μg/ml), 
and L-glutamine (2 mM). After trypsinization and 
seeding at low density, isolated clones were selected 
and used in the cytotoxicity assay. 

Drug treatment 
Different concentrations of pioglitazone (10, 100, 500 
and 1000 µM) were added into the culture media and 
all toxicity markers were evaluated 48 hours after drug 
administration. Dihydroxyacetone (1, 5 and 10 mM) 
and glyceraldehyde (1 and 5 mM) were co-
administered with pioglitazone as ATP suppliers. 

 Cell viability assessment 
Cell viability was measured by MTT test (methyl 
tetrazolium assay). Cells (3×106) were washed with 
phosphate buffer saline (PBS, pH=7.4) and added to 
96-well plate. Then 10 µl of MTT (0.5 mg/ml) was 
added and the incubation continued for 4 h at 37 o C. 
The formazan dye accumulated in living cells was 
dissolved in 100 µl of dimethyl sulfoxide (DMSO), and 
then quantified by optical density (OD) measured at 
570 nm with a microplate reader.29  

 
Measurement of ATP 

Cells were washed with pre-warmed (37 o C) phosphate 
buffer saline (PBS, pH=7.4) to remove the culture 
medium. One milliliter of ice-cold perchloric acid (0.3 
M) containing Na-EDTA (1 mM) was added to cells. 
Cell lysate was transferred to a test tube, and 
centrifuged at 9000×g (5 min at 4◦C). The supernatant 
was neutralized with equimolar KOH (2 M base). After 
re-centrifugation (9000×g for 5 min), the extract was 
stored at −70 o C for subsequent analysis. Cellular ATP 
levels were analyzed by an isocratic reversed-phase 
high performance liquid chromatography (HPLC) 
method, using a Knouer® HPLC system, coupled with a 
UV detector.  Ammonium dihydrogen phosphate (0.05 
M, pH=6.0) was used as the mobile phase with a flow 
rate of 1 ml/min. The absorbance of nucleotides was 
recorded at 254 nm and the run time of 20 min. The 
concentration of ATP was determined in terms of 
micromole nucleotide per mg of protein.30 

 Measurement of lipid peroxidation 
 Thiobarbituric acid reactive substances (TBARS) 
assay was used to determine the amount of lipid 
peroxidation in cell culture.  Briefly, at the end of the 
incubation period, cells were collected and washed 
with PBS (pH=7.4). Cells were centrifuged and 
resuspended in a mixture of 2 ml reagent consisted of 
trichloroacetic acid (20%), thiobarbituric acid (0.8%) 
and HCl (0.5 N). The cell suspension was heated in 
boiling water for 60 minutes and then centrifuged (10 
minutes, 5000 rpm). The absorbance of developed 
color was assessed in 532 nm using a UV 
spectrophotometer.26,31  

Analysis of cellular reduced and oxidized glutathione 
(GSH/GSSG) 
GSH analysis was performed spectrophotometrically.32  
Cells were washed with PBS, then 200 µl of 
trichloroacetic acid (20%) was added and vortexed. 
After centrifugation, 0.5 ml of 5, 5'-dithiobis-2-
nitrobenzoic acid (DTNB) (0.01 M), 2 ml NaHPO4 (0.3 
M) and 1ml NaBH4 (5%) was added to the supernatant. 
The absorbance of developed color was recorded at 412 
nm using a UV spectrophotometer.33,34 In order to 
analyze the GSSG amount. After addition of NaBH4, 
GSH was measured again. The difference between 
these two values was reported as the GSSG amount. 

Statistical Analysis 
Results represent the Mean±SD. Statistical significance 
of difference between control and treatment groups was 
determined using one-way analysis of variance 
(ANOVA) followed by a Tukey’s post hoc test. The 
minimal level of significance was P < 0.05. 

Results  
Pioglitazone caused cell injury in a concentration-
dependent manner (Table 1). It was found that, 
incubation of HepG2 cells with 500 µM and 1 mM of 
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pioglitazone for 48 hours reduced cell viability to about 
84% and 39% of control respectively (Table 1). Lower 
concentrations of pioglitazone didn’t show significant 
cytotoxicity (Table 1). The ATP content of the cells 
were dropped in accordance with decreasing in cell 
viability (Table 2). Administration of 1 mM of 
pioglitazone significantly decreased cellular ATP 
content (Table 2). Dihydroxyacetone (5 and 10 mM) 
and glyceraldehyde (1 and 5 mM) administration 

significantly prevented ATP depletion and cell death 
induced by pioglitazone (Table 2). However, fructose, 
glucose and α-ketoglutarate were unable to prevent 
cytotoxicity or ATP depletion induced by pioglitazone 
(data not shown). Pioglitazone administration didn’t 
affect cellular lipid peroxidation, or reduced (GSH) and 
oxidized (GSSG) glutathione content of HepG2 cells 
(Table 3). 

Table 1. HepG2 cells injury induced by different concentrations of pioglitazone as assessed after 48 hours of incubation. 

Incubate Cytotoxicity 
(MTT assay , % of control) 

Control (only HepG2 cells) 
+ Pioglitazone 10 µM 

100±1.52 
99.25±1.91 

+ Pioglitazone 100 µM 96.78±1.9 
+ Pioglitazone 500 µM 84.03±1.58a 
+ Pioglitazone 1 mM 38.82±3.25b 

Data are expressed as Mean±SD for at least four independent experiments. 
                                                                        a Indicates significantly different from control  (P<0.5). 
                                                                        b Indicates significantly different from control (P<0.01). 
 

Table 2. Effect of ATP suppliers on the cell injury and ATP content in pioglitazone-treated cells (Incubation time = 48 hours). 

 

Incubate 

Cytotoxicity 
(MTT assay , % of 
control) 

Cell ATP content 
(µmol/3×10 6 cells) 

Control (only HepG2 cells) 
+ Pioglitazone 1mM 

100.03±0.9 
26.73±3.48 a 

22±3 
14±2 a 

+ Dihydroxyacetone 1 mM 38.98±4.49 16±3 
+ Dihydroxyacetone 5 mM 66.23±15.14 b 17±5 
+ Dihydroxyacetone 10 mM 89.00±10.35 b 23±5 b 
+ Glyceraldehyde 1 mM 55.08±7.87 b 24±4 b 
+ Glyceraldehyde  5 mM 91.73±10.35 b 25±3 b 

                    Data are given as Mean±SEM for at least four independent experiments. 
                                    a Significantly lower as compared with control (only HepG2 cells) (P<0.05). 
                                    b Significantly higher than pioglitazone-treated cells (P<0.05). 
 

Table 3. Effects of pioglitazone on lipid peroxidation and glutathione content of HepG2 cells (Incubation time = 48 hours). 

 TBARS  
(nmol/3×106 

cells) 

GSH  
( µmol/3×106 cells ) 

GSSG  
( µmol/3×106 cells) 

Control (only HepG2) 0.193±0.070 5.58±0.089 2.993±0.046 
+ Pioglitazone 1 mM  0.067±0.032 5.323±0.299 3.163±0.090 
Data are expressed as Mean±SD for at least four independent experiments. TBARS; thiobarbituric acid reactive 
substances, GSH; reduced glutathione, GSSG; oxidized glutathione. 

 Pioglitazone did not significantly affect lipid peroxidation and GSH/GSSG content of HepG2 cells. 
 
Discussion 
Pioglitazone caused injury toward HepG2 cells 
concentration dependently. Cellular injury caused by 
this drug was accompanied with ATP depletion in cells 
but no significant lipid peroxidation or decrease in 
cellular glutathione reservoirs were found. 
Mitochondria seems to be a potential target for 
thiazolidinediones (TZDS)-induced cytotoxicity. 
Tirmenstein et al. showed that troglitazone caused a 
drop in mitochondrial membrane potential in HepG2 

cells and also decreased ATP levels.28 In the present 
study, we showed that pioglitazone decreased ATP 
synthesis by mitochondria. Dihydroxyacetone and 
glyceraldehyde reduced Pioglitazone-induced 
mitochondrial injury and prevented ATP depletion and 
cytotoxicity. Therefore, our study suggest that 
Pioglitazone-induced toxicity toward HepG2 cells is 
partly mediated by ATP depletion possibly through the 
inhibition of mitochondrial respiration.  
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Different factors might affect the mechanisms by which 
xenobiotics induce liver injury.35 Inherited 
mitochondrial dysfunction in human population36,37 
might affect the cytotoxicity of different drugs 
including pioglitazone. Hence, some patients might be 
more susceptible to pioglitazone-induced liver injury. 
Pioglitazone is metabolized by CYP2C8 and 
CYP3A4.38 Pioglitazone and/or its reactive metabolites 

might affect mitochondrial function (Figure 1), which 
finally might lead to cell death. Dihydroxyacetone and 
glyceraldehyde are produced in glycolysis pathway and 
finally produce ATP in the cell.39 Our data suggest that 
cellular ATP suppliers are protective agents against 
pioglitazone-induced cell injury (Table 2). Hence, these 
agents might be consider as potential therapeutic 
options against TZDs-induced liver injury. 

 

 

Figure 1. The proposed mechanism of cell injury induced by pioglitazone and the cytoprotective effect of ATP suppliers. 
 
Oxidative stress and GSH depletion are postulated 
mechanisms for pioglitazone-induced cell injury. 
However, pioglitazone did not induce lipid 
peroxidation or GSH depletion in HePG2 cells in our 
experiments (Table 3). Some previous studies have 
shown that pioglitazone has a reactive ring-opened 
product identified in microsomes taken from rat and 
human hepatocytes.20,40 This metabolite is trapped by 
glutathione and.20,40 It is possible that HePG2 cell lines 
do not metabolize this compound to the mentioned 
ring-opened metabolite, as we did not observe any 
change in GSH content of the cells. On the other hands, 
although we have shown that pioglitazone caused cell 
injury through the mitochondrial dysfunction in HepG2 
cell line, the in vivo conditions might be different for 
this drug to induce cytotoxicity.   
Collectively, our data suggest that cellular toxicity 
induced by pioglitazone in HePG2 cells is mainly 
mediated by ATP depletion (Figure 1). These findings 
need to be confirmed by other experimental models.  
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