Quality of surgical scrub in a heart hospital: Do not take it for granted

Leila Abdollahi1, Jafar Sadeq Tabrizi2, Ahmadreza Jodati3, Naser Safaie1, Mohammad Moradi-Joo4,5, Amin Daemi*

1Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
2Health Services Management Research Center, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
3Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5Department of Health Management & Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
6Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran

Introduction

Despite considerable advancements in surgery, postsurgery infection still is one of the causes of mortality and the surgical team's hands are one of the most important causes of these infections.1 Hands are caring instruments but they also can be carrier of infections.2 According to the World Health Organization (WHO), 40% of the infections seen after healthcare services in the developing countries are preventable.3 Hand hygiene is the most fundamental principle and one of the first measures in reducing nosocomial infections and increasing patient safety.4 The Center for Diseases Control (CDC) reported that correct hand-washing reduces nosocomial infections by 30%.4 The Guide of NationalNosocomial Infections Surveillance System has emphasized the correct hand washing before surgical operations.2 The purpose of hand washing is to remove all microorganisms on the hands and arms.5 In the scrub, the mechanical hand washing is used to eliminate contaminations and to deactivate the microbial flora on the hands.2 The scrub of hands reduces the microorganisms to a large extent and is one of the care standards of surgery.6 Doing hand scrub before surgery is emphasized for reducing nosocomial infections related to health professionals.7 Comparison of three methods of

*Corresponding Author: Amin Daemi, Email: daemi.a@tak.iums.ac.ir

© 2017 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Materials and Methods
This study used a before-after design as a clinical audit in two areas of inputs and process in spring 2014. The study site was operating rooms of the heart specialty Shahid Madani hospital of Tabriz city, East Azerbaijan province, Iran. The hospital is a tertiary care hospital and the largest heart hospital of northwest of Iran. The audit was performed according to the Audit Cycle. In the first stage of study, to extract the standards of surgical scrub, related texts from the Ministry of Health and Medical Education (MOHME) standards were investigated. In the second stage, surgical scrub in the participating hospital compared with the standards. Then the non-compliances with the standards were identified by the audit team. Finally, appropriate intervention measures proposed for improving the situation. The interventions implemented and then the scrub studied again by the same standards (re-audit) to determine the effectiveness of the interventions.

The audit team included a surgeon from the hospital, an operating room technician from the hospital, head nurse of the operating rooms of the hospital, the nurse in charge of the scrub inputs and process in operating rooms of Shahid Madani heart hospital of Tabriz.

Results
Of the 35 observed scrubs in the primary study 28 were the first scrub of the individual in the work shift and 7 were the second scrub. The average time of scrub was 3 minutes and 30 seconds for the first scrub and 3 minutes and 17 seconds for the second scrub of the individual. In the category of inputs of scrub, the average score of compliance with the standards in dimensions of prerequisites, equipment, and general items of scrub were 58%, 55% and 33% respectively. In the category of process, the dimensions of scrub process and scrubbing time the average score of compliance with the standards were 68% and 22% respectively.

Demographic characteristics of participants in two phases

<table>
<thead>
<tr>
<th>Variable</th>
<th>Characteristics</th>
<th>Audit</th>
<th>Re-Audit</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profession</td>
<td>Operating room technician</td>
<td>37% (n = 13)</td>
<td>20% (n = 7)</td>
<td>0.146<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Nurse</td>
<td>12% (n = 4)</td>
<td>31% (n = 11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgeon</td>
<td>51% (n = 18)</td>
<td>49% (n = 17)</td>
<td></td>
</tr>
<tr>
<td>Job experience</td>
<td>Mean</td>
<td>16.48 years</td>
<td>17.05 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>20 years</td>
<td>20 years</td>
<td>0.757<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>1 year</td>
<td>1 year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>30 years</td>
<td>30 years</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>40% (n = 14)</td>
<td>43% (n = 15)</td>
<td>1.00<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>60% (n = 21)</td>
<td>57% (n = 20)</td>
<td></td>
</tr>
</tbody>
</table>

^a P value is prepared by the McNemar test.
^b P value based on paired samples t test.
of the study are listed in Table 1.
The most important non-compliances with the standards are presented in Box 1.
Also there was a non-compliance not related to scrub but related to infection control. So it was worthy to report.
Some personnel went outside the operating room while they wear specific shoes of the operating room. To resolve
the mentioned issues a meeting held by the audit team.
In the meeting it was agreed that some interventions be implemented. The interventions were:
- Hospital’s policy about scrub time to be communicated in the meetings of the operating room personnel
- To provide the scrubbers (mainly the surgeons and the head nurse) with feedback about the non-
 compliances
- To install the scrub education poster beside the scrub sink
- To provide a basket for putting the used brushes
- To lower the height of scrub solution container to make it easy to use
- To change the place of the clock to front of the scrub sink

The interventions implemented and the re-audit was conducted 2 weeks later. Of the 35 observed scrubs,
28 were first scrub of the individual in the work shift and 7 were the second scrub. The average time of the
scrub was 4 minutes for first scrubs and 2 minutes and 25 seconds for second scrubs. Results of the re-audit
showed that in the category of scrub inputs, the average score of compliance with the standards in dimensions of
prerequisites, equipment and general items of scrub were 72%, 66% and 66% respectively. In the category of process,
for the dimensions of scrub process and scrubbing time the average score of compliance with the standards were
85% and 61% respectively. Table 2 compares the scores of the audit and re-audit, separated by scrubbers’ profession.
Figure 1 compares the total scores of compliance with the standards, before and after the interventions.

Box 1. Most important non-compliances with the scrub standards in the Shahid Madani Heart Hospital, Tabriz, Iran: 2014

- Lack of awareness about hospital’s policy on scrub time
- Disregard to scratches on the hands and arms and not reporting it
- No hand washing with soap before the scrub
- Not being sure that the gown and gloves are ready for use after scrub
- Some scrubbers did not use brushes, while the hospital’s policy was to use it for the fingernails
- Incorrect order of scrubbing the areas of hands (not starting the scrub from nails and fingertips)
- Incorrect way of scrubbing the arms (not using spin movements)
- Insufficient scrubbing the arms (not above elbow)
- Not drying hands with the two ends of the towel
- No possibility to set the water temperature
- Shortage of scrub sink (only one sink-with two faucets- for four operating rooms)
- Putting used brushes inside the scrub sink
- Inappropriate height of scrub solution container
- The clock was not in eyesight of the scrubbers

Discussion

Results of the primary investigation showed considerable defects in the surgical scrub of the studied hospital.
Compliance with the scrub time standards had the lowest score (22%). After implementing interventions,
improvement was observed in all studied aspects of scrub. The improvement was bigger in scrub time (39%)
Scrub prerequisites: Hospital’s policy on scrub time and on using brushes communicated. This communication
resulted in improvements in the time and process areas (Figure 1). Previous studies have shown that
increasing awareness about a policy will lead to increased compliance with it. Lack of awareness about hospital
policy leads to variations in the scrub of the personnel. Providing the surgical staff with the documented policy
is recommended. It may help to improve the quality of scrub and then to prevent post-surgery infections.
Scrubs in a heart hospital

The National Institute of Clinical Excellence has suggested that surgeons, surgical assistants and surgical team do scrub on entering to the operating room and do alcohol hand rub between surgeries or after changing clothes. Yet, in this study the hospital’s policy was to do scrub for every surgery (with different time duration for first and second scrub). This rule was followed by all surgical team members. As an intervention in this dimension, a poster of step-by-step scrub education along with proposed time duration for scrub, attached to the wall beside the scrub sink to remind the scrubbers how and how much to scrub. Next item in this dimension was periodical sampling of scrubbers’ hand for microbial counting. Although the sampling of the hands was mentioned in the national standards, it was not done in the hospital. Only a sampling from the surfaces was done periodically.

Further to the periodical microbial count of the scrubbed hands, the infection control nurse of the hospital can play a more active role in improving the quality of surgical scrub in the hospital. Activities include regular periodical and random observation of the scrubbing, feeding back to the personnel, reporting to the hospital authorities, and presenting the results as statistics and graphs. The infection control staff should be trained on methods of investigating the surgical site infection, and had a basic knowledge of computer and mathematics to be able to provide education and feedback to the personnel.

Post-surgery infection results in lengthened hospital stay, delayed healing, increased use of antibiotics, financial and psychological burden and in some cases to mortality. The most important, most simple and least expensive measure to prevent it, is the hand hygiene of the surgical team. The present study found considerable defects in the surgical scrub of a teaching hospital of heart specialty. So we should never take the quality of the scrub for granted even in such contexts. On the contrary, due to high sensitivity of open heart surgery, we should pay more attention to it. Low compliance with the scrub standards may be affected by various factors including workload. We used audit to study and improve the situation as it is reported to able to be a tool for improving the infection control.

Table 2. Comparison of the audit and re-audit scores of the surgical scrub in the Shahid Madani Heart Hospital, Tabriz, Iran: 2014; separated by professions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Stage of audit</th>
<th>Operating room technician (%)</th>
<th>Nurse (%)</th>
<th>Surgeon (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrub prerequisites</td>
<td>Audit</td>
<td>59</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Re-audit</td>
<td>73</td>
<td>70</td>
<td>71</td>
</tr>
<tr>
<td>Scrub process</td>
<td>Audit</td>
<td>66</td>
<td>76</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Re-audit</td>
<td>76</td>
<td>82</td>
<td>90</td>
</tr>
<tr>
<td>Scrub time (first and second)</td>
<td>Audit</td>
<td>15</td>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Re-audit</td>
<td>57</td>
<td>72</td>
<td>52</td>
</tr>
</tbody>
</table>

Scrub process: There were several defects in the process of the observed scrubs. A previous study in Iran also stated that the surgical scrub in some cases is performed incorrectly. The related interventions were to install the educational poster of scrub beside the scrub sink and to feedback the scrubbers. The interventions led to improvements (Figure 1), just like other studies. A study in Turkey showed that the compliance with standard precautions is based mainly on the individual’s perception. A study in Turkey showed that the scrub performance of the surgical staff is not correlated with their knowledge of infection control. They believed that the proper scrub time (in average) is 4.2 minutes but in practice they scrubbed only for 1.15 minutes. Seventy percent of them said in interview that use of brush is needed for hand disinfection but 73% did not use brushes in practice. It seems that mandatory formal educational courses do not help and the staff, especially the surgeons, do not attend the courses even when mandatory. Continuous regular education, providing feedback, and participation of the surgeons in developing the hospital policy may result in elevated compliance to the standards.

Scrub time: According to hospital’s policy, standard time for the first scrub was 5 minutes and for the second scrub was 2 minutes. However, observations of this study showed that the duration of scrub in the first and second scrub of the individuals was almost similar (3 minutes and 30 seconds versus 3 minutes and 17 seconds). In fact when there is no explicit rule about scrub time, everyone’s scrub is based on his/her previous training or experience. Since over-scrubbing can increase the risk of skin damage, it is better for the scrubbers to follow the rules. Also the skin damage due to scrub may cause them not to do scrub perfectly. Over-scrubbing also leads to considerable waste of water. After the interventions implemented, the average time of the scrub (first and second scrub) changed according to the rules (4 minutes for first scrubs and 2 minutes and 25 seconds for second scrubs).

Scrub equipment: The scrub solution container was installed very high and as it was automatic, when someone wanted to get solution for scrub, it often shed on the clothes of the scrubber. The container lowered to fix the problem. The observations also made it clear that the scrubbers did not pay attention to scrub time. The clock was behind the scrubbers and thus was visible in mirror. As an intervention to make seeing it easier, the place of clock changed to the front of the scrub sink. This might have an effect in the improvement of scrub time.

General items of scrub: The National Institute of Clinical Excellence has suggested that the scrub solution container was behind the scrubbers and thus was visible in mirror. The observations also made it clear that the clothes of the scrubber. The container lowered to fix the problem. The interventions led to improvements (Figure 1), just like other studies. A study in Turkey showed that the scrub performance of the surgical staff is not correlated with their knowledge of infection control. They believed that the proper scrub time (in average) is 4.2 minutes but in practice they scrubbed only for 1.15 minutes. Seventy percent of them said in interview that use of brush is needed for hand disinfection but 73% did not use brushes in practice. It seems that mandatory formal educational courses do not help and the staff, especially the surgeons, do not attend the courses even when mandatory. Continuous regular education, providing feedback, and participation of the surgeons in developing the hospital policy may result in elevated compliance to the standards.

Scrub process: There were several defects in the process of the observed scrubs. A previous study in Iran also stated that the surgical scrub in some cases is performed incorrectly. The related interventions were to install the educational poster of scrub beside the scrub sink and to feedback the scrubbers. The interventions led to improvements (Figure 1), just like other studies. A study in Turkey showed that the compliance with standard precautions is based mainly on the individual’s perception. A study in Turkey showed that the scrub performance of the surgical staff is not correlated with their knowledge of infection control. They believed that the proper scrub time (in average) is 4.2 minutes but in practice they scrubbed only for 1.15 minutes. Seventy percent of them said in interview that use of brush is needed for hand disinfection but 73% did not use brushes in practice. It seems that mandatory formal educational courses do not help and the staff, especially the surgeons, do not attend the courses even when mandatory. Continuous regular education, providing feedback, and participation of the surgeons in developing the hospital policy may result in elevated compliance to the standards.

Scrub time: According to hospital’s policy, standard time for the first scrub was 5 minutes and for the second scrub was 2 minutes. However, observations of this study showed that the duration of scrub in the first and second scrub of the individuals was almost similar (3 minutes and 30 seconds versus 3 minutes and 17 seconds). In fact when there is no explicit rule about scrub time, everyone’s scrub is based on his/her previous training or experience. Since over-scrubbing can increase the risk of skin damage, it is better for the scrubbers to follow the rules. Also the skin damage due to scrub may cause them not to do scrub perfectly. Over-scrubbing also leads to considerable waste of water. After the interventions implemented, the average time of the scrub (first and second scrub) changed according to the rules (4 minutes for first scrubs and 2 minutes and 25 seconds for second scrubs).

Scrub equipment: The scrub solution container was installed very high and as it was automatic, when someone wanted to get solution for scrub, it often shed on the clothes of the scrubber. The container lowered to fix the problem. The observations also made it clear that the scrubbers did not pay attention to scrub time. The clock was behind the scrubbers and thus was visible in mirror. As an intervention to make seeing it easier, the place of clock changed to the front of the scrub sink. This might have an effect in the improvement of scrub time.

General items of scrub: The National Institute of Clinical Excellence has suggested that surgeons, surgical assistants and surgical team do scrub on entering to the operating room and do alcohol hand rub between surgeries or after changing clothes. Yet, in this study the hospital’s policy was to do scrub for every surgery (with different time duration for first and second scrub). This rule was followed by all surgical team members. As an intervention in this dimension, a poster of step-by-step scrub education along with proposed time duration for scrub, attached to the wall beside the scrub sink to remind the scrubbers how and how much to scrub. Next item in this dimension was periodical sampling of scrubbers’ hand for microbial counting. Although the sampling of the hands was mentioned in the national standards, it was not done in the hospital. Only a sampling from the surfaces was done periodically.

Further to the periodical microbial count of the scrubbed hands, the infection control nurse of the hospital can play a more active role in improving the quality of surgical scrub in the hospital. Activities include regular periodical and random observation of the scrubbing, feeding back to the personnel, reporting to the hospital authorities, and presenting the results as statistics and graphs. The infection control staff should be trained on methods of investigating the surgical site infection, and had a basic knowledge of computer and mathematics to be able to provide education and feedback to the personnel.

Post-surgery infection results in lengthened hospital stay, delayed healing, increased use of antibiotics, financial and psychological burden and in some cases to mortality. The most important, most simple and least expensive measure to prevent it, is the hand hygiene of the surgical team. The present study found considerable defects in the surgical scrub of a teaching hospital of heart specialty. So we should never take the quality of the scrub for granted even in such contexts. On the contrary, due to high sensitivity of open heart surgery, we should pay more attention to it. Low compliance with the scrub standards may be affected by various factors including workload. We used audit to study and improve the situation as it is reported to able to be a tool for improving the infection control.
Limitations of the study
This study investigated the inputs and process of the preoperative scrub. It is better to see the outputs too. Studying the output and outcome measures of scrub such as microbial count of the scrubbed hands and the prevalence of post-surgery infection might help us to know if the scrub is effective or not. Another limitation of the study was small sample size. Although the sample size was enough for the study purpose, a larger sample of multi-center study would make the researchers able to perform statistical tests to investigate potential variations in job, time/working shift and any other factor. The observational nature of the study also may cause bias. The scrubbers might have changed their scrub due to presence of the observer.

Conclusion
This study observed the surgical scrub in the operating rooms of a heart specialty hospital in the real situation. The results showed considerable defects in the scrub of the studied hospital. After implementing some interventions, the compliance with the standards improved in all dimensions. Yet, the gap between compliance scores and the expected situation shows that still there is room for improvement. Considering the results of the study, we recommend periodic review of the scrub in the operating rooms of the hospitals to see whether it complies with the standards or not and to point out the problems to be solved.

Ethical approval
Study protocol approved by the Institutional Review board which is the Ethics Committee of Tabriz University of Medical Sciences. The committee did not require consent. Permission of the hospital authorities attained.

Competing interests
All authors declare no competing financial interests exist.

Acknowledgements
This study is funded by the Students Research Committee of Tabriz University of Medical Sciences. Authors also would like to thank Mr. Mehdi Banagozar, Mr. Mohammad Ali Sheikhalizadeh, and Mrs. Roghayeh Mahmoudian, the personnel of the Shahid Madani hospital of Tabriz for their kind cooperation.

References

