Optimized and Validated RP-UPLC Method for the Determination of Losartan Potassium and Chlorthalidone in Pharmaceutical Formulations

Tadiboyina Sirisha1*, Bannimath Gurupadayya1, Sridhar Siddiraju2

1 Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS University, Mysore, India.
2 Department of Pharmaceutical Chemistry, Malla Reddy College of Pharmacy, Osmania University, Secunderabad, India.

Abstract
Purpose: A validated ultra performance liquid chromatography (UPLC) method has been developed and validated for the simultaneous determination of losartan potassium and chlorthalidone in pharmaceutical preparations.

Methods: Waters-Acquity UPLC system equipped with Auto Sampler, PDA detector and operated with Empower-2 software was used for the present study. Detection was done at wavelength of 230 nm, HSS C18, 100 mm x 2.1 x 1.8 μm column with a reverse phase elution and mobile phase composed of A and B mixed in the ratio 56:44 v/v (Where mobile phase A consists of potassium dihydrogen phosphate buffer of pH 3.0 and Mobile phase B consists of acetonitrile and methanol mixed in the ratio of 90:10 v/v) used at a flow rate of 0.4ml per minute.

Results: The retention times for losartan potassium and chlorthalidone were observed at 0.72 and 1.89 minutes. The developed method was validated as per ICH guidelines. Linearity ranges were found to be 12.5-125 μg/ml and 3.125-31.25 μg/ml for losartan potassium and chlorthalidone, respectively.

Conclusion: This method is fast, accurate, precise and sensitive hence it can be employed for routine quality control of tablets containing both drugs in industries.

Introduction
Losartan potassium (LSP), an angiotensin II receptor antagonist used in the treatment of hypertension. Losartan potassium is given to delay progression of diabetic nephropathy and also to reduce renal disease progression in patients with type 2 diabetes. Chlorthalidone (CLD), a thiazide diuretic used in the treatment of hypertension. Chlortalidone increases the excretion of sodium, chloride, and water into the renal lumen by inhibiting sodium ion transport across the renal tubular epithelium. Losartan and Chlortalidone combination therapy is prescribed because they have complementary mechanism of action which allows for synergistic lowering of blood pressure and more over this combination therapy allows lower dosage requirements of each individual agent which leads to decreased side effects and improved compliance. The chemical structure of LSP and CLD were presented in Figure 1.

A number of analytical and bioanalytical methods have been reported for the estimation of LSP by using UV,1,2 HPLC,3-7 LC/MS/MS8-11 and voltammetry.12 A few of analytical methods have been reported for the estimation of chlorthalidone by using Potentiometry,13 UV,14 HPLC,15 Capillary electrophorosis16,17 and also by LC/MS/MS.18

Figure 1. Chemical Structures of Losartan Potassium (A) and Chlorthalidone (B)

From the above literature, it was found that, there are no chromatographic methods available for the simultaneous estimation of losartan potassium and chlorthalidone in their combined dosage form, this work holds a challenge for developing a new method in ultra performance liquid chromatography. Moreover, among the existing liquid chromatographic methods, there exists no method in which LSP is eluted below 4 min. Hence UPLC was selected in order to reduce the elution time of both the drugs which in turn reduce the consumption of mobile phase and time of analysis.

*Corresponding author: Tadiboyina Sirisha, Tel: +918884699984, Email: tadiboyina.sirisha@gmail.com
2015 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
Materials and Methods

Instrumentation
Waters-Acquity UPLC system equipped with auto sampler, binary gradient pump, and PDA detector was used for the separation. An analytical column; HSS C18, (100 mm x 2.1x 1.8 µm) was used in the analysis. For data collection and processing Chromatographic software Empower -2 was used.

Chemicals and Reagents
Losartan potassium pure drug was obtained from Chemit laboratories, Hyderabad and chlorthalidone pure drug was obtained from Hetero Drugs, Hyderabad. The commercially available formulations of losartan potassium and chlorthalidone(ctd-L 25/6.25mg) were purchased from the local market. The HPLC grade water was obtained from Millipore. Acetonitrile and methanol of HPLC grade were obtained from E. Merck. (India) Ltd., Mumbai. Potassium dihydrogen phosphate and ortho phosphoric acid of analytical grade were purchased from Chempure pvt Ltd., India.

Preparation of standard solution
Stock solution (50μg/mL, 12.5 μg/mL) of losartan potassium and chlorthalidone was prepared by dissolving accurately weighed 25 mg of losartan potassium standard and 6.25mg of chlorthalidone standard into a 25ml volumetric flask, dissolved and made up to the volume. A series dilute solutions ranging from 12.5 to 125 μg/mL of losartan potassium and 3.125 to 31.25 μg/mL of chlorthalidone were prepared by taking different aliquots (0.125 to 1.25 mL) of the stock solution and diluted to 10ml with diluent in similar manner.

Preparation and sample solution
About 20 tablets of ctd-L were weighed and powdered and from that powder the amount of powder equivalent to 25mgf losartan potassium and 6.25mg of chlorthalidone was dissolved in 25 mL of diluent in a volumetric flask, sonicated and made up to the mark. Further working standard (50μg/mL, 12.5 μg/mL) of losartan potassium and chlorthalidone was prepared by transferring 0.5 mL of the stock solution into 10 mL volumetric flask and diluted up to the mark with diluent, sonicated and filter through 0.45 mm filter.

Results and Discussion

Optimisation of chromatographic method
The chromatographic separation was carried out under the isocratic conditions. The mobile phase was allowed to flow through the column at a flow rate of 0.4 mL/min for 3 min to equilibrate the column at ambient temperature. Chromatographic separation was achieved by injecting a volume of 0.5μl of standard into HSS C18, (100 mm x 2.1x 1.8 µm) column .The mobile phase of composition 560 mL of solution A (1.36g of potassium dihydrogen phosphate buffer of pH 3.0) and 440ml mL of solution B (acetonitrile and methanol in 9:1 ratio) was allowed to flow through the column at a flow rate of 0.4 ml per minute for a period of 3.0 min. Detection of the component was carried out at a wavelength of 230 nm. The retention time of the components were found to be 0.72 and 1.89min for losartan potassium and chlorthalidone respectively (Figure 2). The system suitability parameters such as tailing factor and theoretical plate count were found to 1.36, 1.25 and 11040, 8325, respectively.

Validation results of the method
Validation of the proposed method was done according to ICH guidelines. In the repeatability study, the % relative standard deviation (%RSD) was 0.51 & 0.37 for the retention times of losartan potassium and chlorthalidone and 0.13 & 1.31 for the peak areas of both the drugs. In the intermediate precision which is the study of reproducibility of results in different days, the % relative standard deviation for the retention times and peak areas were 0.831, 0.523 and 0.522, 0.849 for both the drugs.

The limit of detection (LOD) and LOQ concentrations were estimated by using signal to noise ratio method. At 3:10 S/N ratio the LOD and LOQ were found to be 497ng/mL and 1508 ng/mL for losartan potassium and 71 ng/ mL and 217 ng/ mL for chlorthalidone.

Good linearity was observed over the concentration range of 12.5 to 125 μg/ mL for losartan and 3.125 to 31.25 μg/ mL for chlorthalidone with correlation coefficient > 0.999 for both the drugs and data was presented in Table 1.

Table 1. Validation parameters of developed UPLC method for analysis of LSP and CLD

<table>
<thead>
<tr>
<th>Parameters</th>
<th>LSP</th>
<th>CLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression equation (y=m+cx)</td>
<td>5919.3</td>
<td>2044.7</td>
</tr>
<tr>
<td>Slope (m)</td>
<td>8407.3</td>
<td>216.57</td>
</tr>
<tr>
<td>Intercept (c)</td>
<td>0.9994</td>
<td>0.9997</td>
</tr>
<tr>
<td>Correlation coefficient (r²)</td>
<td>0.997</td>
<td>0.997</td>
</tr>
<tr>
<td>LOD (ng/mL)</td>
<td>497</td>
<td>71</td>
</tr>
<tr>
<td>LOQ(ng/mL)</td>
<td>1508</td>
<td>217</td>
</tr>
<tr>
<td>Precision (%RSD) (n=5)</td>
<td>0.132</td>
<td>1.31</td>
</tr>
<tr>
<td>Intra day</td>
<td>0.522</td>
<td>0.849</td>
</tr>
<tr>
<td>Inter day</td>
<td>1.31</td>
<td></td>
</tr>
</tbody>
</table>
The standard addition and recovery experiments were conducted for both the drugs in triplicate at 50, 100 and 150% of analyte concentration. The recovery was calculated from the slope and y-intercept of the calibration curve and the % recovery was ranged from 99.56% to 100.03% for losartan potassium and 98.73% to 100.34% for chlorthalidone (Table 2).

The chromatographic resolution of losartan potassium and chlorthalidone peaks was observed during solution stability and mobile phase stability experiments. Hence, standard solutions and mobile phase were stable at up to 48hr during assay determination.

Conclusion
The proposed RP-UPCLC method was found to be simple, fast, precise, accurate and rugged. Both the drugs were eluted below 2min hence reduces the run time and the mobile phase composition, made the method economical. The drugs were found to be stable throughout the assay period. Therefore the developed method may be used as an alternative method for routine analysis in quality control.

Acknowledgments
The authors would like to thank Principal, and administrative officer, JSS College of pharmacy, Mysore for providing us the laboratory facilities for research work.

Ethical Issues
Not applicable.

Conflict of Interest
The authors declare no conflict of interest.

References