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Introduction 

Drugs-induced liver injury (DILI) is an important side 

effect for many pharmaceuticals.
1
 Some drugs are known 

to cause hepatic injury, where in most cases the 

mechanism of hepatotoxicity is not fully understood.
2-5

 

The pathogenesis of DILI is usually involves the 

participation of the parent drug and/or its metabolite(s). 

Mechanisms of DILI are many and varied.
6
 Elucidating 

the mechanisms of DILI, will help scientists to design 

safer pharmaceuticals and suggest new ways to treat 

and/or prevent liver injury induced by different 

medications.  

Antithyroid drugs are chemically thionamide compounds 

(Figure 1), which are used in the management of 

hyperthyroidism in humans more than 60 years.
7
 

Administration of these drugs is associated with different 

adverse effects including deleterious ones such as 

agranulocytosis
8,9

 and hepatotoxicity.
10,11

 Other well 

known complications of antithyroid drugs include skin 

rash,
12

 teratogenicity,
13

 abnormalities of smell and 

taste,
14

 and lupus erythmatosus.
15,16

 

Methimazole, 2-Mercapto-1-methylimidazole (Figure 1), 

is an anti-thyroid drug from thiono-sulfur chemical class 

that developed in 1950.
7,17

 Administration of this drug is 

associated with hepatotoxicity.
11

 Several cases of 

drug-induced hepatic damage have been reported after 

methimazole administration.
10,18-20

 However, the 

mechanism(s) of methimazole-induced hepatotoxicity is 

not fully understood so far. 

 

 
Figure 1. Commonly used antithyroid drugs and thiourea as their 
parent compound.  

 

The antithyroid drug, propylthiouracil (PTU) (Figure 1), 

was introduced for clinical use 60 years ago and is 

estimated to be used in many children and 

adolescents.
7,17

 Hepatotoxicity is a dangerous side effect 

associated with PTU administration.
21

 There are some 

reports of PTU-induced liver failure and death.
22-25

 This 

drug seems to has a more severe hepatotoxic profile in 

pediatrics.
26

 To date there has not been any mechanistic 

evaluation of the hepatotoxicity induced by PTU. Some 

investigations suggested to withdraw PTU from the 

market because of its dangerious and fatal hepatotoxic 
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Abstract 
Drug-induced liver injury (DILI) is a major problem for pharmaceutical industry and drug 

development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of 

DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death 

induced by drugs. Methimazole and propylthiouracil (PTU) are two convenient antithyroid 

agents which their administration is accompanied by hepatotoxicity as a deleterious side 

effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is 

no clear idea about the mechanism(s) of hepatotoxicity induced by these medications. 

Different mechanisms such as reactive metabolites formation, oxidative stress induction, 

intracellular targets dysfunction, and immune-mediated toxicity are postulated to be 

involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of 

antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion 

about the mechanisms of liver injury. However, it seems that reactive metabolite formation 

and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially 

those caused by methimazole. This review attempted to discuss different mechanisms 

proposed to be involved in the hepatic injury induced by antithyroid drugs. 
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reactions.
23,24

 Hence, understanding the mechanism(s) of 

hepatotoxicity induced by PTU will provide new ways to 

prevent/treat liver injury induced by this drug. 

This study attempts to review different mechanisms 

proposed to be involved in the hepatic injury induced by 

antithyroid medications. Some postulated mechanisms of 

antithyroids hepatotoxicity including reactive 

metabolites formation, oxidative stress induction, 

intracellular targets dysfunction, and immune-mediated 

toxicity are reviewed in current investigation. 

 

Antithyroid drugs’
 
reactive metabolites 

Many investigations has been performed on the 

significance of reactive metabolites in the pathogenesis 

of drug-induced hepatotoxicity.
1,27

 Drugs’ reactive 

metabolites might be detoxified by cellular defense 

mechanisms, and/or invade different intracellular targets, 

which finally encounter cytotoxicity and cell death. 

The primary metabolic pathway for the majority of 

xenobiotics entails the cytochrome P450 (CYP450) 

system.
28

 Other hepatic enzyme systems such as flavine-

dependent monoxygenase (FMO) and/or phase ΙΙ 

xenobiotics metabolizing enzymes, might also be 

involved in drug bioactivation and hepatotoxicity.
29,30

 

Reactive metabolites have the capability to induce 

cellular injury via several mechanisms such as covalent 

binding to cellular macromolecules.
31

 The covalent 

adduction of reactive metabolites to critical cellular 

targets might has many consequences such as disruption 

in cellular calcium (Ca
2+

), which is a critical ion to 

preserve cell homeostasis.
32

 Recently, efforts to further 

understanding of the involvement of metabolic activation 

of a drug and following covalent binding to cellular 

macromolecules in adverse drug reactions are growing.
33

  

The evidences of metabolic bioactivation of methimazole 

has been proven in different experiments.
34,35

 

Furthermore, it has been shown that enzyme-induction 

enhanced methimazole-induced hepatotoxicity,
36

 which 

is an indicator implying the critical role of reactive 

metabolites in the liver injury. Methimazole reactive 

metabolites are proposed to be involved in different side 

effects associated with this drug, including olfactory 

mucosal damage
37,38

 or agranulocytosis.
39

 

N-methylthiourea and glyoxal are two suspected 

methimazole
,
 reactive intermediates, which their 

probable role in liver injury is reviewed in current study 

(Figure 2).
35,40,41

  

 

 
Figure 2. Proposed methimazole metabolites, and their role in hepatic injury. Reactive intermediates formed during methimazole 
metabolism may bound to macromolecule targets (e.g proteins), and cause toxicity or might be detoxified by nucleophilic molecules such 
as glutathione (GSH). FMO: Flavine-containing monooxygenase, CYP: cytochrome P450, GSH: reduced glutathione. Adapted from 
references.

35,40
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Cytochrome P450 enzyme (CYP450) and flavoprotein-

mixed-function oxidase (FMO) are founded to be 

responsible for methimazole metabolism.
37,38,42-45

 The 

proposed bioactivation pathways of methimazole in liver 

have been explained in previous studies. In one of these 

investigations, this pathway consisted of CYP-mediated 

epoxidation of the double bond in methimazole to give 

compound (1) (Figure 2), subsequent ring opening to the 

dihydrodiol (2) with release of glyoxal (3) and N-methyl 

thiourea (4) (Figure 2).
35,40

 Following further flavin 

monooxygenase-mediated bioactivation (Figure 2), the 

suggested proximate toxicant, N-methylthiourea (4)
35

 is 

converted to the putative ultimate toxicants, sulfenic acid 

(5) and sulfinic acid (6) (Figure 2).
40

 Sulfenic acids are 

reactive nucleophilic agents, capable of interacting with 

different intracellular targets.
46

 Hence, these reactive 

metabolites might play a role in methimazole-induced 

injury toward hepatocytes. Another presented metabolic 

pathway for methimazole is the direct S-oxidation of this 

drug by FMO enzyme (Figure 2).
47

 S-Oxidation products 

of methimazole, includes some other sulfenic (7) and 

sulfinic acid species (8) (Figure 2), which might have a 

role in the adverse effects induced by this drug.
44

 Several 

events such as the loss of rat liver microsomal P450 

during methimazole metabolism,
45

 and the olfactory 

toxicity induced by this drug
37

 are attributed to these 

reactive intermediates.  

As mentioned, some studies showed the metabolic 

activation by direct oxidation of the thiol group of 

methimazole,
47

 which might be responsible for the 

toxicity induced by this drug. It has been shown that the 

major metabolic pathways of a variety of cyclic 

thiocarbamides other than methimazole; including 

2-mercapto-4,5-dihydroimidazole and 

2-mercaptobenzimidazole compounds,
48

 are also known 

to involve oxidation at their thiol groups, giving the 

corresponding sulfenates.
48

 Nevertheless, 

2-mercapto-4,5-dihydroimidazole and 

2-mercaptobenzimidazole were totally ineffective in 

inducing hepatotoxicity.
48

 This strongly suggests that the 

direct S-oxidation pathway may not be responsible for 

the toxicity of methimazole.
48

 Some experiments has 

been shown that, the generation of reactive intermediates 

is involved in covalent binding to olfactory mucosa, as 

assessed by autoradiography, following administration of 

3H-labelled methimazole.
38

 Some studies showed the 

lack of olfactory toxicity of the sulphur-lacking 

methimazole analogues.
37,49

 These valuable studies may 

shed light on the mechanisms of methimazole-induced 

toxicity toward hepatocytes and other organs rather than 

liver. 

In another study, it has been observed that methimazole 

will oxidized to N-methylhydantoin and also 

N-methylthiourea (Figure 3).
47

 Again, the methyl 

thiourea is formed through this metabolic pathway, and 

might be responsible for methimazole toxicity in liver 

(Figure 3). Nevertheless, the other metabolite, 

N-methylhydantoin has not been evaluated for its 

toxicity toward hepatocytes yet (Figure 3). 

 

 
Figure 3. N-methylthiourea and hydantoin ring formation during methimazole metabolism. 

 

The other methimazole reactive metabolite, glyoxal (3) 

(Figure 2), is a well-known cytotoxic agent with 

capability of inducing oxidative stress and cellular 

dysfunction.
50,51

 It has been found that in addition to N-

methylthiourea, as the proposed toxic metabolite of 

methimazole,
35

 glyoxal might also has a great role in 

methimazole-induced cytotoxicity (Figure 2).
52

 Glyoxal 

detoxification process is involved the effect of 
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glyoxalase enzyme, which is a 

glutathione (GSH)-required process (Figure 2).
53

 GSH-

depleted cells and/or liver are reported to be very 

susceptible to methimazole adverse effects.
34,52

 The 

higher susceptibility of GSH-depleted cells to 

methimazole might be expectable by considering the role 

of GSH in detoxification of methimazole reactive 

metabolites such as glyoxal (Figure 2).
53,54

 However, the 

role of GSH in conjugating/deactivating other 

methimazole intermediates cannot be ruled out (Figure 

2). The exact reactive metabolite(s) and/or its proportion 

in liver injury induced by methimazole needs further 

investigations to be completely revealed, but it seems 

that bioactivation of this drug in liver is a proposed 

mechanism by which methimazole caused liver damage 

in contribution with other potential factors. 

Although deleterious and even fatal cases of liver injury 

have been reported after PTU administration,
55,56

 there is 

no mechanistic investigation on the hepatotoxicity 

induced by this drug. Liver failure induced by PTU, 

appears to be different in several aspects in children and 

adults.
52

 For the past decade, health care professionals 

have worried that children treated with PTU might be at 

a higher risk of liver injury.
57,58

 

To date, there is no report on the PTU reactive 

metabolite(s) formation in liver, and the role of such 

intermediates in the hepatotoxicity induced by this drug 

is ambiguous. Some investigations proposed that reactive 

metabolites are produced during myeloperoxidase 

(MPO) action on PTU in neutrophils, which might be 

related to agranulocytosis as a side effect of this drug.
59,60

 

However, the production of such metabolite in liver has 

not been proven yet (Figure 4). Some studies suggested 

the role of glucoronidation as a metabolic pathway for 

PTU detoxification (Figure 4).
61

 Since a significant 

difference between uridine diphosphoglucoronosyl 

transferases (UGTs) activity in adults and children has 

been proved,
62,63

 the different profile of PTU-induced 

hepatotoxicity might be attributed to the UGTs activity 

in pediatrics (Figure 4). 

 

 
Figure 4. Proposed PTU metabolic pathways and its relation to hepatic injury. 
MPO: Myeloperoxidase, H2O2: Hydrogen peroxide, CYP: Cytochrome P450, FMO: Flavine-containing monooxygenase, SULTs: 
Sulfotransferases, GST: Glutathione-S-Transferase, UGT: Uridine diphospho glucoronosyl transferase, PTU-SO: Sulfate conjugate of PTU. 

 

Another finding which might be attributed to PTU-

induced liver injury is the effects of this drug and/or its 

metabolites on intracellular targets such as vital 

enzymes. Kimio et al. have reported that PTU and its 

sulafted metabolites (Figure 4), inhibited glutathione 

transferase (GSTs) and glutathione peroxidase (GPx), 

concentration dependently.
64

 Since GSTs and GPx play a 

critical role as intracellular defense mechanisms against 

toxic insult,
65

 their inhibition might be relevent to PTU-

induced hepatic injury. However more investigation is 

needed to prove such mechanism. 

As mentioned, no mechanistic evaluation is available 

about PTU-induced hepatotoxicity to date. Hence, more 

future experiments are needed to elucidate the 

mechanism(s) of PTU-induced liver injury to prevent the 

fatal hepatic damage caused by this drug. Overall, it can 

be concluded that the exact reactive metabolite(s) by 

which antithyroid drugs cause toxicity in liver is not 

clear completely yet. However, drug bioactivation and 

reactive intermediates formation seems to have a great 

role in antithyroid drugs-induced hepatic injury, at least 

for those caused by methimazole. 

 

Antithyroid drugs and intracellular targets  

Mitochondria 

Different investigations mentioned the role of 

intracellular targets in antithyroid agents-induce 

cytotoxicity.
34,36

 Among these, is mitochondrion as a 

critical intracellular target for xenobiotics.
66,67

 

Mitochondria are major potential targets for many 

xenobiotics-induced toxicity.
65

 It has been shown that 

some chemicals including different drugs caused 

mitochondrial damage in hepatocytes.
6
 Previous 

investigations revealed that antithyroid drugs such as 

methimazole might affect hepatocytes mitochondria as 

revealed by collapse in mitochondrial membrane 

potential (ΔΨm).
68

 The effects of methimazole on 

cellular mitochondria might be attributed to its reactive 
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metabolites such as glyoxal.
41,52

 Glyoxal has been shown 

to be a mitochondrial toxin.
69

 Methimazole-induced 

mitochondrial injury is more severe in 

glutathione-depleted cells.
52

 This indicates the critical 

role of glutathione in preventing the adverse effects of 

methimazole on intracellular targets and its consequent 

toxicity. 

Cellular mitochondria seems to be a target for PTU to 

induce cellular damage and toxicity.
66

 It has been found 

that shape and size of mitochondria was changed to giant 

mitochondria (megamitochondria) in PTU-induced 

hepatic injury.
66

 In addition it has been observed that the 

inner and outer membrane of mitochondria were 

fragmented and their matrices were lytic in PTU-induced 

hepatotoxicity.
66

 Due to the critical role of cellular 

mitochondria in regulating cell function, apoptosis and 

cell death,
67

 the effects of PTU on this organelle might 

has a role in PTU-induced hepatic injury (Figure 5). 

 

 
Figure 5. The proposed mechanisms for bioactivation of drugs with thiourea moiety. 
RSH: Thiol-containing targets (e.g glutathione and proteins), CYP450: Cytochrome P450, FMO: Flavin-dependent monooxygenase, 
MPO: Myeloperoxidase, H2O2: Hydrogen peroxide. 

 

Proteins 

Due to their abundance in cells, proteins are major 

targets of attack by xenobiotics.
70

 In contrast to binding 

of xenobiotics to intracellular targets such as DNA, the 

toxicological significance of protein binding is less clear. 

Not all protein bindings are toxicologically relevant, 

however when critical proteins such as different enzymes 

are attacked by xenobiotics, the toxicity might occur.
71

 

Enzymes are sensitive proteins, which might be a target 

for xenobiotics to induce hepatotoxicity. Catalase (CAT), 

glutathione peroxidase (GPx), glutathione transferase 

(GST), and superoxide dismutase (SOD) are enzymes, 

which seems to be a target for antithyroid drugs to 

induce cellular dysfunction and toxicity.
72

 It has been 

shown that, glyoxal as a methimazole metabolite and as a 

reactive aldehyde produced in many biological 

processes,
73

 deactivated cellular enzymatic 

antioxidants.
74-76

 Moreover, it has been found that PTU 

and its sulfate conjugates inhibited glutathione 

transferase (GST) and glutathione peroxidase (GPx) 

enzymes, concentration dependently.
64

  

Antioxidant enzymes deactivation by xenobiotics might 

lead to imbalance in production and deletion of reactive 

oxygen species (ROS) and finally oxidative stress. The 

production of reactive oxygen species (ROS) has been 

implicated in hepatotoxicity induced by many 

chemicals.
77

 The increase in cellular ROS can lead to 

state of oxidative stress that consequently damage cells, 

especially in those with weak defense mechanisms. Lipid 

peroxidation can be the consequences of ROS or reactive 

metabolites formation.
78

 The role of ROS formation and 

lipid peroxidation in methimazole-induced 

hepatotoxicity is investigated in different studies.
36,52,72

 It 

has been shown that methimazole-induced cytotoxicity 

was accompanied with ROS formation, lipid 

peroxidation, and glutathione reservoirs depletion
41,52

, 

which are signs of oxidative stress in biological systems. 

In conclusion, it can be stated that cellular antioxidant 

defense mechanisms impairment and oxidative stress 

induction seem to have a role in antithyroid drugs-

induced hepatotoxicity, since these drugs deactivated 

antioxidant enzymes.
64,72

 Further investigation is needed 

to reveal such mechanisms, especially in PTU cases.  

 

Role of inflammation and immune system in 

antithyroid drugs-induced liver injury 

A number of investigations have suggested a variety of 

factors, which may not linked to drug metabolism, could 

also affect DILI. Among these, are immunological 

reactions. Immunological reactions and inflammatory 

process have been implicated in the development of liver 

injury induced by many drugs.
1,79

 

Different investigations reported the release of 

autoantibodies and cytokines in antithyroid-treated 

patients and/or animals.
80,81

 Kobayashi et al. found that 

cytokine-mediated immune response could has a great 
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role in methimazole-induced hepatic injury in mice.
79

 

These findings might suggest a role for immune system 

in mediating hepatic injury induced by antithyroid 

medications. Weiss et al. have reported cases of PTU-

induced hepatic damage in which auto-antibodies were 

demonstrated.
82

 Hyashida et al. have shown lymphocyte 

sensitization in a patient with neonatal liver injury 

probably by placental transfer of PTU.
83

 All these reports 

are in line with the hypothesis that immune system plays 

a role in the pathogenesis of liver damage associated 

with PTU therapy. 

An intriguing theory for immune-mediated DILI is the 

hapten hypothesis.
84

 According to this theory, the drug 

reactive metabolites are undergoes covalent binding with 

different proteins. The drug-protein complex is then 

recognized by immune system, consequently the 

activation of immune system might lead to toxicity.
84

 As 

mentioned, antithyroid drugs’
 
reactive metabolites are 

capable of interacting with different intracellular targets, 

including proteins (Figure 6). Hence, these modified 

proteins might act as haptens and stimulate immune 

system. 

 

 
Figure 6. Postulated role of inflammatory cells in antithyroid drugs bioactivation and its consequent liver injury. MMI: Methimazole, PTU: 
Propylthiouracil, MPO: Myeloperoxidase, GSH: Glutathione, GSSG: Oxidized glutathione. 

 

There is much to learn about the role and mechanism of 

immune-mediated DILI. Recently the models for 

studying hepatotoxicity has been greatly altered and new 

experimental tools for DILI are developed. These new 

strategies include drug-inflammation interaction model 

(Figure 6).
85,86

 In Drug-inflammation interaction model it 

is postulated that a slight, non-toxic inflammation stress 

will exacerbate drugs-induced liver injury.
87

 It has been 

postulated that inflammatory cells aggregated in liver 

and their inflammatory mediators, have a pivotal role in 

mediating liver injury (Figure 6).
87

 On the other hand, 

neutrophils and macrophages (kupffer cells in liver) 

contain myeloperoxidase (MPO) enzyme (Figure 6).
88

 

Peroxidases might have a major role in drug 

metabolism.
88

 Hence, in addition to the role of 

immunological reactions and inflammatory mediators in 

drug-inflammation interaction model, the ability of 

inflammatory cells in mediating drug metabolism via 

MPO, might also be considered in toxic reactions of 

drugs in this model (Figure 6). 

It has been shown that methimazole was metabolized by 

myeloperoxidase enzyme in an in vitro experiment to 

produce reactive metabolites and oxidized glutathione.
89

 

In another study by Waldhauser et al., it has been found 

that PTU converted to reactive intermediates by 

neutrophils MPO.
58

 It has been suggested that this 

reaction might be attributed to the agranulocytosis 

associated with PTU administration.
58 

Since 
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inflammatory cells aggregate in liver at drug-

inflammation interaction model, the chance of reactive 

metabolites formation might increase and consequently 

the hepatotoxicity ensue (Figure 6). The hepatotoxicity 

induced by antithyroid medications could be the subject 

of future studies in these novel experimental models, to 

improve our understanding of the mechanisms of liver 

injury induced by these agents. 

 

Hepatotoxicity induced by conventional 

drug/chemicals with thiourea structure 

Methimazole and PTU are thiourea-containing structures 

(Figure 1). Moreover, N-methylthiourea is one of the 

suspected hepatotoxic metabolite of methimazole.
35

 This 

section tried to review the toxicity of thiourea-containing 

chemicals to get a better insight into the hepatotoxicity 

induced by antithyroid drugs. 

Thiourea (Figure 1), is the parent compound for many 

drugs and industrial agents. Some antituberculosis 

agents,
90

 centrally acting histamine H3 antagonists,
91

 and 

anti HIV reverse transcriptase (RT) inhibitors,
92

 are 

among thiourea-containing drugs. 

Different adverse effects toward biological systems are 

attributed to thiourea-based chemicals. Genotoxicity,
93,94

 

hepatotoxicity,
95,96

 pulmonary toxicity,
97

 and contact 

dermatitis
98

 are adverse events associated with thiourea-

containing compounds. Derivatives of thiourea are 

among the early drugs identified to cause hepatic 

injury.
99,100

 

Different forms of flavine-dependent monoxygenase 

enzymes (FMOs) believed to have a great role in 

mediating thiourea-containing chemicals metabolism and 

converting them to reactive intermediates.
101,102

 The 

thiourea metabolism is believed to occur via S-oxidation 

of the thionocarbonyl functional group (Figure 7)
44,101

 to 

give reactive sulfenic acid species.
103

 In an interesting 

finding on thiourea-containing chemicals toxicity, it has 

been demonstrated that GSH depletion hastened 

thiocarbamates toxicity.
95,104

 As mentioned, it has been 

revealed that glutathione-depleted cells are very 

susceptible to methimazole.
34,52

 These finding might 

suggest a role for thiourea toxicity (N-methylthiourea as 

methimazole metabolite), in such conditions. However, 

as previously stated, the other methimazole metabolite, 

glyoxal, needs GSH for its detoxification. 

 

 
Figure 7. The possible pathways for antithyroid drugs to induce cytotoxicity
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The metabolites produced during thiourea-containing 

chemicals biotransformation are capable of reacting with 

protein sulfhydryls and/or GSH (Figure 7). If this 

adduction makes a mixed disulfide that affect protein 

(Enzymes) function adversely, then toxicity would ensue 

(Figure 7).
46,101

 The olfactory toxicity of drugs such as 

methimazole, might be attributed to its reactive 

metabolites produced during FMO enzymes activity in 

nasal epithelium.
37

  

The exact enzyme responsible for converting 

methimazole and/or PTU to reactive intermediates in 

liver is not clearly understood, but further investigation 

on the role of FMO3 (as the most abundant FMO enzyme 

isoform in human liver),
29

 in antithyroid drugs 

metabolism might enhance our understanding of liver 

injury induced by these drugs. 

Although it is apparent that sulfhydryl reactivity and 

binding is a common event after thiourea containing 

drugs biotransformation, the toxicological significance of 

this fact is less obvious. Hence, evaluating the fate of 

sulfenic acid species in liver might elucidate the 

mechanisms of hepatotoxicity induced by thiourea-

containing chemicals.  

 

Conclusion remarks 

Although, much more investigation are needed for 

rigorous conclusion to be drawn on the mechanisms of 

hepatic injury induced by antithyroid drugs, but it seems 

that a combination of drug reactive metabolite formation 

and immunological reactions are responsible for the 

situation. Elucidating the precise mechanisms of 

hepatotoxicity induced by antithyroid agents, will allow 

clinicians to prevent fulminant liver failure, need for 

liver transplantation, and death induced by these 

medications. 

All mentioned proposed mechanisms for antithyroid 

drugs to induce liver injury are summarized in Figure 7.  
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